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Bedforms in a turbulent stream: formation
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It is widely accepted that both ripples and dunes form in rivers by primary linear
instability; the wavelength of the former scaling on the grain size and that of
the latter being controlled by the water depth. We revisit here this problem in a
theoretical framework that allows to give a clear picture of the instability in terms
of dynamical mechanisms. A multi-scale description of the problem is proposed,
in which the details of the different mechanisms controlling sediment transport are
encoded into three quantities: the saturated flux, the saturation length and the
threshold shear stress. Hydrodynamics is linearized with respect to the bedform
aspect ratio. We show that the phase shift of the basal shear stress with respect
to the topography, responsible for the formation of bedforms, appears in an inner
boundary layer where shear stress and pressure gradients balance. This phase shift is
sensitive to the presence of the free surface, and the related effects can be interpreted
in terms of standing gravity waves excited by topography. The basal shear stress
is dominated by this finite depth effect in two ranges of wavelength: when the
wavelength is large compared to the flow depth, so that the inner layer extends
throughout the flow, and in the resonant conditions, when the downstream material
velocity balances the upstream wave propagation. Performing the linear stability
analysis of a flat sand bed, the relation between the wavelength at which ripples form
and the flux saturation length is quantitatively derived. It explains the discrepancy
between measured initial wavelengths and predictions that do not take this lag
between flow velocity and sediment transport into account. Experimental data are
used to determine the saturation length as a function of grain size and shear velocity.
Taking the free surface into account, we show that the excitation of standing waves
has a stabilizing effect, independent of the details of the flow and sediment transport
models. Consequently, the shape of the dispersion relation obtained from the linear
stability analysis of a flat sand bed is such that dunes cannot result from a primary
linear instability. We present the results of field experiments performed in the natural
sandy Leyre river, which show the formation of ripples by a linear instability and
the formation of dunes by a nonlinear pattern coarsening limited by the free surface.
Finally, we show that mega-dunes form when the sand bed presents heterogeneities
such as a wide distribution of grain sizes.
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1. Introduction
Since Richards (1980), and followed by others (Sumer & Bakioglu 1984; McLean

1990), ripples and dunes observed on the bed of sandy rivers have been interpreted as
the two most unstable modes of the same linear instability. Although the classification
of river bedform types is a difficult task (Ashley 1990), subaqueous ripples and dunes
are standardly defined by their typical size: ripples are the small-scale bedforms whose
wavelength λ scales on the grain size d and dunes are those whose wavelength is
comparable to or larger than the flow depth H (Kennedy 1963; Engelund 1970;
Fredsøe 1974; Richards 1980; Engelund & Fredsøe 1982; Allen 1985). A variant of
this definition was used by Guy, Simons & Richardson (1966): dunes are the bed
features larger than ripples that distort significantly the free surface and are out
of phase with the standing waves they generate; ripples are the triangular shaped
bedforms that have ‘lengths of less than about 2 feet and heights of less than
about 0.2 foot’. In some other articles (Hill, Srinivasan & Unny 1969; Yalin 1977),
the classification of bedforms is rather based on the ratio of the grain diameter d

to the viscous sublayer depth, i.e. on the particle Reynolds number u∗d/ν (u∗ is
the shear velocity and ν is the kinematic viscosity of the fluid). These criteria are
questionable, especially when there is no clear separation of length scale between
the spacing of ripple crests and the flow depth, and also in the case of bedforms
superimposed on larger structures (Venditti, Church & Bennett 2005a). In this paper,
willing to refer to the dynamical mechanisms involved in the formation of these
bedforms, we shall call ripples those whose characteristics are independent of the
flow depth; in contrast, dunes are directly related to the presence of a free surface. In
particular, we shall not use the term ‘sand wavelets’, as suggested by Coleman et al.
(Coleman & Melville 1994, 1996; Coleman & Eling 2000; Coleman, Fedele & Garcia
2003) to designate the initial stage of ripples when they emerge from a flat sand
bed.

Experimental measurements on subaqueous ripples are numerous and exhibit large
data dispersion. One of the reasons for such a dispersion is that ripples exhibit
pattern coarsening, i.e. present a progressive increase of their typical length scale as
time goes by (Mantz 1978; Gyr & Schmid 1989; Baas 1994; Coleman & Melville 1994,
1996; Baas 1999; Robert & Uhlman 2001; Coleman et al. 2003; Venditti, Church
& Bennett 2005b; Langlois & Valance 2007; Rauen, Lin & Falconer 2008). Many
authors have only measured fully developed wavelengths, whose relation with the
initial wavelength λ is still an open issue. A reference database of final wavelengths in
inclined flumes has been completed by Yalin (1985). Although not directly comparable
to the predictions of a linear stability analysis, these data show distinct scaling laws
for hydraulically smooth and rough granular beds. For a particle Reynolds number
u∗d/ν smaller than few units, the viscous sublayer is larger than the grain size d

and the fully developed ripple wavelength turns out to scale on ν/u∗, with a large
– yet unexplained – prefactor (∼103). On the other hand, when the grain diameter
d is larger than the viscous sublayer, the wavelength was found to slowly increase
with u∗. Here we will focus on this hydraulically rough regime, in which the flow is
turbulent at all scales down to the grain size. In several experimental articles (Baas
1994; Coleman & Melville 1994, 1996; Coleman & Eling 2000; Coleman et al. 2003;
Langlois & Valance 2007), the initial wavelength λ has been carefully determined,
showing scaling laws independent of the flow depth H . At large particle Reynolds
number, λ is found to be almost independent of the shear velocity u∗ and to increase
with the grain diameter d (for instance Coleman et al. 2003 proposed λ ∝ d0.75). These
measurements will serve as a benchmark for the theory developed in this paper.



Ripples and dunes in a turbulent stream 289

Concerning dunes, most of the measurements have been performed in natural
rivers, for which the Froude number F is low (see Best 2005 for a review). In the
Mississipi river (Harbor 1998), in the Missouri river (Annambhotla, Sayre & Livesey
1972), in the Rhine (Carling et al. 2000; Wilbers & Ten Brinke 2003) and in the
Rio Paraná (Parsons et al. 2005), the observed wavelengths range from 0.5H to 20H

for Froude numbers around 0.2. The suggestion by Kennedy (1963) or Allen (1985)
that dunes should present a well-selected wavelength scaling on H/F2 is thus far
from reflecting the natural dispersion of field data. Flume experiments (see Guy
et al. 1966; Robert & Uhlman 2001 and the data collected by Kennedy 1963) have
been performed in a much larger range of Froude numbers (from 0.1 to 1) and also
show well-developed bedform wavelengths between H and 30H . The extensive data
published by Guy et al. (1966) are particularly impressive, and the interested reader
should refer to the original article rather than to the truncated data set plotted by
Fredsøe (1974). We will discuss these data at the end of this article.

It has long been recognized that the mechanism responsible for the formation and
growth of bedforms is related to the phase-lag between sediment transport and bed
elevation (Kennedy 1963; Reynolds 1965; Kennedy 1969; Hayashi 1970; Smith 1970;
Parker 1975; Engelund & Fredsøe 1982; McLean 1990). It has been shown in the
context of aeolian dunes that this lag has two contributions, which can be considered
as independent as the time scale involved in the bed evolution is much slower than
the hydrodynamics relaxation (Andreotti, Claudin & Douady 2002; Kroy, Sauermann
& Herrmann 2002; Valance 2005). First, there is a shift between the bed and the
basal shear stress profiles. This shift purely results from hydrodynamics and its sign
is not obvious a priori, i.e. the stress maximum can be either upstream or downstream
of the bed crest depending on the topography or the proximity of the free surface.
The second contribution comes from the sediment transport: the sediment flux needs
some time/length to adapt to some imposed shearing (Bagnold 1941). This relaxation
mechanism induces a downstream lag of the flux with respect to the shear. When the
sum of these two contributions results in a maximum flux upstream of the bed crest,
sediment deposition occurs on the bump, leading to an unstable situation and thus
to the amplification of the disturbance.

We consider here the generic case of a flow over a fixed sinusoidal bottom of
wavelength λ (see figure 1 for an illustration of the geometry and some notations). In
order to obtain the basal shear stress and in particular its phase shift with respect to the
topography, the equations of hydrodynamics must be solved in this geometry. The case
of viscous flows has been investigated by Benjamin (1959), Bordner (1978), Caponi
et al. (1982), Charru & Hinch (2000), Lagrée (2003) and Valance & Langlois (2005).
The first attempts to model the high-Reynolds-number regime in the context of ripples
and dunes in rivers have dealt with potential flows (Kennedy 1963; Reynolds 1965;
Coleman & Fenton 2000), for which the velocity field does not present any lag with
respect to the bottom. The shallow-water approximation (Gradowczyk 1970) implies
that the bedforms spread their influence on the whole depth of the flow. However,
patterns only have a significant influence within a vertical distance on the order of
their wavelength. It is then crucial to compute explicitly the vertical flow structure,
taking into account the turbulent fluctuations. In order to overcome the flaws of the
perfect flow, constant eddy viscosity closures have been tried to improve Kennedy’s
original model (Engelund 1970; Smith 1970; Fredsøe 1974). Further progress has
been made by Richards (1980), who used a more sophisticated modelling with an
additional equation on the turbulent energy and a closure that involves a Prandtl
mixing length in the expression of the eddy viscosity. Sumer & Bakioglu (1984) made
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Figure 1. Schematic of the instability mechanism showing the streamlines around a bump.
The fluid is flowing from left to right. A bump grows when the point at which the sand flux
is maximum is located upwind the crest. The upwind shift of the maximum shear stress with
respect to the crest has a hydrodynamical origin (factor B/A) and scales on the size of the
bump λ. The spatial lag between the shear stress and the flux maxima is the saturation length
Lsat .

use of the same turbulent modelling, but in the case of an infinite water depth. A
mixing length approach was also used by Kobayashi & Madsen (1985) to improve
Benjamin’s laminar description.

In the meteorological context of atmospheric flows over low hills, a deep and
fundamental understanding of the physics of turbulent flows over a relief has been
developed from the 1970s (see the review by Belcher & Hunt 1998). Starting with
the seminal work of Jackson & Hunt (1975), further refined by Sykes (1980) and
Hunt, Leibovich & Richards (1988), the gross emerging picture is that the flow
can be thought of as composed of three layers, associated with different physical
mechanisms and different length scales. Jackson & Hunt (1975) have been able to
compute analytically the basal shear stress for asymptotically large patterns, under
an infinite flow depth assumption. Their ideas have been discussed in a rather vast
literature. The predictions of these calculations, and in particular this layered structure
of the flow, have been compared with experiments (see e.g. Britter, Hunt & Richards
1981; Gong & Ibbetson 1989; Finnigan et al. 1990) or field measurements on large-
scale hills (see e.g. the review paper by Taylor, Mason & Bradley 1987), with a good
degree of success, especially on the upstream side of the bumps. Moreover, they have
been tested against the results of the numerical integration, in various configurations,
of Navier–Stokes equations closed with different turbulent closures (Taylor 1977a,b;
Richards & Taylor 1981; Ayotte, Xu & Taylor 1994). The relevance of this approach
for the description of the flow and the stresses around aeolian sand dunes has also
been investigated (see e.g. Weng et al. 1991) and is amongst the current directions of
research in that community (Wiggs 2001).

As we shall see in this paper, the basal shear stress is generically found to be
in phase advance with respect to the bottom profile (i.e. a destabilizing role) in the
case of an unbounded flow. This means that, without any stabilizing mechanism, all
wavelengths are found unstable. A key mechanism introduced by Fredsøe (1974) and
kept in the following models is the stabilization of short wavelengths by a slope effect
in the transport threshold. In these models, the preferred wavelength results from
hydrodynamics and is proportional to the hydrodynamical roughness z0 (or to ν/u∗
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in the case of a viscous surface layer treated by Sumer & Bakioglu 1984). As shown
by Charru (2006), the predicted ripple wavelengths are smaller than all experimental
findings by several orders of magnitude.

In Kennedy (1963) and his followers (Reynolds 1965; Hayashi 1970; Smith 1970),
a phenomenological spatial lag δ between the local sediment transport rate and the
local velocity at the bottom of the outer layer is introduced. The phase shift between
the sediment flux and the elevation profile is then simply −2πδ/λ. This corresponds
to a phase delay for λ > 2δ, but to a phase advance for δ < λ < 2δ. As shown by
Parker (1975), such a constant phase lag is not physically founded and the subsequent
instability comes from a mathematical artefact. Rather, the adaptation of sediment
transport to some imposed shearing can be described by a first-order relaxation
equation of the form:

Lsat∂xq = qsat − q. (1.1)

where qsat is the saturated (or equilibrium) flux, which is a function of the basal shear
stress. This linear equation reflects the fact that the sand flux reaches its saturated
value over a characteristic length Lsat . As for any other first-order system, the phase
delay between the flux and the shear stress increases here from 0 for large wavelengths
to π/2 for wavelengths much smaller than Lsat (i.e. a stabilizing role). The concept of
flux saturation was correctly introduced in a linear stability analysis by Parker (1975),
the flow being modelled by depth-averaged equations standardly used in hydraulics.
However, these equations cannot describe the layered structure of the turbulent flow
above bumps (Jackson & Hunt 1975), and in particular the so-called inner layer that
is responsible for the phase shift between shear and topography. As a consequence,
this author missed the explanation of the ripple instability.The idea that Lsat is the
relevant length scale for the problem of dune formation was introduced in the aeolian
context by Sauermann, Kroy & Herrmann (2001), Andreotti et al. (2002) and Kroy
et al. (2002). Linear stability analysis developed in this context (Elbelrhiti, Claudin &
Andreotti 2005; Claudin & Andreotti 2006; Andreotti & Claudin 2007) suggests that
the initial wavelength actually scales on Lsat , and not on z0. This line of thinking has
been applied since then to subaqueous ripples (Valance 2005; Valance & Langlois
2005; Charru 2006). Importantly, although Lsat and z0 are both ultimately related
to the grain size d , they correspond to very different mechanisms associated with
sediment transport and hydrodynamics, respectively.

Although Richards (1980) suggested that dunes could form by the same linear
instability as ripples, no article has ever exhibited a proper and complete dispersion
relation showing, in the same graph, the growth rate σ for a range of wavenumbers
k that includes both ripples and dunes. In the figures provided by Richards (1980),
σ is rescaled by k2, which artificially enhances the small k (dunes) region. More
recently, Colombini (2004) and Colombini & Stocchino (2005) revisited this problem,
introducing that the thickness of the transport layer has a key parameter. This
empirical refinement gives in practice an adjustable phase shift between relief and
sand transport and allows to get a single well-defined peak in the dispersion relation,
associated with dunes, at a wavelength on the order of the flow depth. However, this
model does not predict the existence of a small-scale (ripple) instability anymore.

In this paper, we wish to discuss afresh this ripple and dune formation problem, and
in particular to get such a complete dispersion relation where the peak associated with
ripples is present. To reach this goal, we first describe the properties of a turbulent
flow over a wavy bottom, generalizing Jackson & Hunt’s analysis in the relevant
range of wavelength λ < 104 z0, for which their asymptotic matching is no more
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valid, and in the presence of a free surface. We then show how to abstract the details
of the transport mechanisms into a general framework with three key quantities,
namely the saturated flux, the saturation length and the transport threshold. Mixing
these ingredients, we show that the most unstable wavelength, corresponding to the
ripple mode, is the product of a non-dimensional prefactor of hydrodynamical origin
(destabilizing mechanism) by the transport saturation length (stabilizing mechanism).
However, in contrast to Richards (1980), we show that dunes cannot form by a linear
instability mechanism, and must rather result from the interaction and nonlinear
pattern coarsening of ripples (Raudkivi & Witte 1990; Raudkivi 2006), limited by the
free surface. This conclusion is supported by field experiments, performed in the Leyre
river (France). Finally, we review and discuss the data available in the literature in
the light of these theoretical and experimental results. Also, for the sake of concision,
several tests of the robustness of our results, as well as some technical considerations
of these calculations, are gathered in online supplementary appendices available at
journals.cambridge.org/FLM.

2. Turbulent flow over a wavy bottom
2.1. Turbulent flow over a uniform bottom

2.1.1. The logarithmic law

We consider a turbulent flow over a relief. Following Reynolds’ decomposition
between average and fluctuating (denoted by a prime) quantities, the equations
governing the mean velocity field ui can be written as

∂iui = 0, (2.1)

Dtui = ∂tui + uj∂jui = −∂jτ ij − ∂ip, (2.2)

where τ ij = u′
iu

′
j is the Reynolds stress tensor (Reynolds 1874). For the sake of

simplicity, we omit the density factor ρ in front of the pressure p and the stress
tensor. The reference state is the homogeneous and steady flow over a flat bottom,
submitted to an imposed constant shear stress τxz = −u2

∗. The turbulent regime is
characterized by the absence of any intrinsic length and time scales. At a sufficiently
large distance z from the ground, the only length scale limiting the size of turbulent
eddies – the so-called mixing length L – is precisely z; the only mixing time scale is
given by the velocity gradient |∂zux |. As originally shown by Prandtl (1925), it results
from this dimensional analysis that the only way to construct a diffusive flux is a
turbulent closure of the form:

τxz = −κ2L2|∂zux |∂zux, (2.3)

where the mixing length is L = z and κ � 0.4 is the (phenomenological) von
Kármán constant. After integration, one obtains that the velocity has a single non-
zero component along the x axis, which increases logarithmically with z (Tritton
1988):

ux =
u∗

κ
ln

(
z

z0

)
, (2.4)

where z0 is the hydrodynamical roughness. This expression does not apply for z → 0:
there is a layer of thickness h0 close to the bottom, called the surface layer, matching
the logarithmic profile to a null velocity on the ground.
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2.2. Hydrodynamical roughness

The hydrodynamical roughness z0 should be distinguished from the geometrical
(or physical) roughness of the ground, usually defined as the root mean square of
the height profile variations. Note that z0 is defined as the height at which the
velocity would vanish, when extrapolating the logarithmic profile to small z; it is
the constant of integration in (2.4). The physical mechanism controlling z0 can be
of different natures. If the ground is smooth enough, a viscous sublayer of typical
size O(ν/u∗) must exist, whose matching with the logarithmic profile determines the
value of z0. On the contrary, if the geometrical roughness is larger than the viscous
sublayer, turbulent mixing dominates at small z with a mixing length controlled
by the ground topography. In the case of a flat static granular bed composed of
grains of size d , reported values of the hydrodynamical roughness are reasonably
consistent (z0 � d/30 in Bagnold 1941, z0 � d/24 in Schlichting & Gersten 2000 and
z0 � d/10 in Kamphuis 1974; Andreotti 2004). The situation is of course different in
the presence of sediment transport, which may (or not) induce a negative feedback
on the flow. In this case, the hydrodynamical roughness z0 may directly be controlled
by the transport characteristics (e.g. mass flux and grain trajectories). We consider the
asymptotic limit in which the typical relief length – say, the wavelength λ – is much
larger than the surface layer thickness h0. The relief is locally flat at the scale h0,
so there must be a region close to the ground where the velocity profile shows a
logarithmic vertical profile. In the online Appendix, we discuss the case of moderate
values of the ratio λ/h0, for which the flow becomes sensitive to the details of the
mechanisms controlling the roughness.

2.2.1. A turbulent closure

In the logarithmic boundary layer, the normal stresses can be written as

τxx = τyy = τzz = 1
3
τll with τll = κ2χ2L2|∂zux |2, (2.5)

where χ is a second phenomenological constant estimated in the range 2.5–3. Note
that χ does not have any influence on the results as it describes the isotropic
component of the Reynolds stress tensor, which can be absorbed into the pressure
terms. Normal stress anisotropy can be easily taken into account, as explained in the
online Appendix. Introducing the strain rate tensor γ̇ ij = ∂iuj + ∂jui and its squared

modulus |γ̇ |2 = (1/2)γ̇ ij γ̇ ij , we can write both expressions (2.3) and (2.5) in a general
tensorial form:

τ ij = κ2L2|γ̇ |
(

1
3
χ2|γ̇ | δij − γ̇ ij

)
. (2.6)

In this paper, we focus on two-dimensional steady situations, i.e. on geometries
invariant along the transverse y direction. As they are of permanent use for the rest
of the paper, we express the components of the velocity and stress equations in the x

and z directions. The Navier–Stokes equations read

∂xux + ∂zuz = 0, (2.7)

ux∂xux + uz∂zux = −∂xp − ∂zτxz − ∂xτxx, (2.8)

ux∂xuz + uz∂zuz = −∂zp − ∂zτzz − ∂xτzx. (2.9)

The stress expressions are the following:

τxz = −κ2L2|γ̇ |γ̇ xz, (2.10)
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τxx = −κ2L2|γ̇ |γ̇ xx + 1
3
κ2χ2L2|γ̇ |2, (2.11)

τzz = −κ2L2|γ̇ |γ̇ zz + 1
3
κ2χ2L2|γ̇ |2. (2.12)

In these expressions, the strain tensor components are given by

γ̇ xz = γ̇ zx = ∂zux + ∂xuz, γ̇ xx = 2∂xux and γ̇ zz = 2∂zuz = −γ̇ xx, (2.13)

and the strain modulus is given by

|γ̇ |2 = 2(∂xux)
2 + 2(∂zuz)

2 + (∂zux + ∂xuz)
2 = 4(∂xux)

2 + (∂zux + ∂xuz)
2. (2.14)

2.3. Linear perturbation analysis

We now consider the turbulent flow over a wavy bottom constituting the floor of an
unbounded boundary layer. In rivers, this corresponds to the limit of a flow depth H

much larger than the bedform wavelength λ (ripples). The solution is computed as a
first-order linear correction to the flow over a uniform bottom, using the first-order
turbulent closure previously introduced.

2.3.1. Linearized equations

For small enough amplitudes, we can consider a bottom profile of the form

Z(x) = ζeikx (2.15)

without loss of generality (real parts of expressions are understood). Note that
λ = 2π/k is the wavelength of the bottom and ζ is the amplitude of the corrugation;
see figure 1. The case of an arbitrary relief can be deduced by a simple superposition
of Fourier modes. We introduce the dimensionless variable η = kz, the dimensionless
roughness η0 = kz0 and the function

U(η) =
1

κ
ln

(
η

η0

)
. (2.16)

We perform the linear expansion of (2.7)–(2.14) with respect to the small parameter
kζ . The mixing length is still defined as the geometrical distance to the bottom:
L = z − Z. And we can write all the relevant quantities f under the generic form:

f (x, z) = f̄ (ξ ) + kζeikxf̃1(ξ ), with ξ = kz − kZ, (2.17)

where f̄ is the homogeneous field. Note that ξ is the curvilinear dimensionless
coordinate. More explicitly, for the velocity and stress fields, we define the non-
dimensional functions Ũ , W̃ , S̃t , S̃n, S̃zz and S̃xx by

ux = u∗
[
U + kζeikxŨ

]
, (2.18)

uz = u∗kζeikxW̃ , (2.19)

τxz = τzx = −u2
∗
[
1 + kζeikxS̃t

]
, (2.20)

p + τzz = p0 + u2
∗

[
1

3
χ2 + kζeikxS̃n

]
, (2.21)

τzz = u2
∗

[
1

3
χ2 + kζeikxS̃zz

]
, (2.22)

τxx = u2
∗

[
1

3
χ2 + kζeikxS̃xx

]
. (2.23)
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The study of the basal shear stress S̃t (0) ≡ A + iB constitutes the core of this section.
The ratio B/A is the tangent of the phase shift between the shear stress and the
topography.

An alternative way to perform the expansion is to use the Cartesian coordinate η

and thus write the field f as

f (x, z) = f̄ (η) + kζeikxf1(η), with η = kz. (2.24)

We call expressions (2.17) and (2.24) the ‘shifted’ and ‘non-shifted’ representations,
respectively, of f – the tilde makes the distinction. The Taylor expansion shows that
Cartesian and curvilinear systems of coordinates are simply related to each other, at
the linear order in kζ , by

f̃1 = f1 + f̄ ′, (2.25)

where the prime denotes the derivative. One can thus rigorously obtain the expression
of f̃1 from that of f1, and reciprocally. Importantly, for the velocity U , the
homogeneous field f̄ = U is not constant, so that Ũ = U + U′. By contrast, W̃ = W ,
S̃t = St and S̃n = Sn.

Although all possible representations are equivalent at the linear order in kζ , they
differ at the nonlinear order, so that their domain of application is different. The range
of amplitude ζ for which the solution of the linear problem is a good approximation
of the full solution scales on z0 for the non-shifted representation. By contrast, it scales
on λ for the shifted representation. However, the linear equations are more compact
in the non-shifted representation. As the passage from the shifted to the non-shifted
representations is mathematically exact, we derive and solve the linear equations in
the Cartesian system, and switch to the shifted representation afterwards: it leads to
the same result to make a change of coordinates and linearize or to linearize and then
make the change of coordinates. In particular, vertical profiles in the forthcoming
figures will be mostly plotted as a function of the shifted variable ξ .

The linearized stress tensor reads:

U′St = 2(U ′ + iW ) − 2κ2ηU′3, (2.26)

U′Sxx = −2iU + 2
3
χ2(U ′ + iW ) − 2

3
χ2κU′2, (2.27)

U′Szz = −2W ′ + 2
3
χ2(U ′ + iW ) − 2

3
χ2κU′2, (2.28)

and the Navier–Stokes equations lead to

W ′ = −iU, (2.29)

S ′
t = UiU + U′W + iSn + iSxx − iSzz, (2.30)

S ′
n = −UiW + iSt . (2.31)

Taking the difference of (2.27) and (2.28), one can compute

Sxx − Szz =
−4iU

U′ (2.32)

to obtain four closed equations:

U ′ = −iW + 1
2
U′St + κU′2, (2.33)

W ′ = −iU, (2.34)
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S ′
t =

(
iU +

4

U′

)
U + U′W + iSn, (2.35)

S ′
n = −iUW + iSt . (2.36)

Introducing the vector X = (U, W, St , Sn), we finally get at the first order in kζ the
following compact form of the equation to integrate:

d

dη
X = PX + S, with P =

⎛
⎜⎜⎜⎝

0 −i 1
2
U′ 0

−i 0 0 0(
iU + 4

U′

)
U′ 0 i

0 −Ui i 0

⎞
⎟⎟⎟⎠ and S =

⎛
⎜⎝

κU′2

0
0
0

⎞
⎟⎠ .

(2.37)
The general solution of this equation is the linear superposition of all solutions of
the homogeneous system (i.e. with S = 0), and a particular solution X s .

2.3.2. Boundary conditions

Four boundary conditions must be specified to solve (2.37). The upper boundary
corresponds to the limit η → ∞, in which the vertical fluxes of mass and momentum
vanish asymptotically. This means that the first-order corrections to the shear stress
and to the vertical velocity must tend to zero: W (∞) = 0 and St (∞) = 0. In practice,
a boundary at finite height H (at ηH = kH ) is introduced, at which we impose a null
vertical velocity W (ηH ) = 0 and a constant tangential stress −u2

∗ so that St (ηH ) = 0.
This corresponds to a physical situation in which the fluid is entrained by a moving
upper plate, for instance a stress-controlled Couette annular cell. Then, we consider
the limit H → +∞, i.e. when the results become independent of H .

The lower boundary condition must be specified on the floor (η → kZ). We
consider here the limit in which the surface layer thickness h0 is much smaller
than the wavelength λ. This allows to perform an asymptotic matching between the
solution and the surface layer, whatever the dynamical mechanisms responsible for
the hydrodynamical roughness z0 are. Indeed, focusing on the surface layer, we know
that in the limit z � h0, the asymptotic behaviour of the local tangential velocity u

should be a logarithmic profile controlled by the local shear stress τ and the roughness
z0. The solution of (2.37) should thus match this asymptotic behaviour as η → kZ.
Thus, z0 is the only parameter inherited from the surface layer in the limit h0 � λ.

In the limit z − Z � λ, the homogeneous solution of (2.37) can be expanded in
power series of the form ηα lnβ(η/η0) and presents four degrees of freedom. The full
solution reads

X ∼
η→0

a1

⎛
⎜⎜⎝

U2/4

1

U
−η2U3/4

⎞
⎟⎟⎠+ a2

⎛
⎜⎜⎝

U/2

−i η U/2

1

i η

⎞
⎟⎟⎠+ a3

⎛
⎜⎜⎝

1

−i η

i η U(η)

− η2 U(η)

⎞
⎟⎟⎠+ a4

⎛
⎜⎜⎝

iη/(2κ)

η2/(4κ)

i η

1

⎞
⎟⎟⎠+ X s,

(2.38)

where X s = (−(1/κη), (i/κ) ln(η/η0), 0, 0) is the asymptotic behaviour of the particular
solution. The following terms in this expansion are O(η ln2(η/η0)).

The values of the four coefficients a1, . . . , a4 are selected by matching with the
surface layer. Note that a1 corresponds to a non-vanishing normal velocity through
the surface layer and should thus be null. Note also that a2 precisely corresponds
to the logarithmic profile with a roughness z0 and a basal shear stress modulation
a2. This gives a2 = St (0). Similarly, a3 corresponds to a modulation of the local
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roughness – more precisely of its logarithm. We do not consider such a modulation
so that a3 = 0. Likewise, a4 corresponds to a sub-dominant behaviour associated with
the basal pressure modulation (a4 = Sn(0)). In summary, the functions U , W , St and
Sn should follow the following asymptotic behaviour:

U (η) =
St (0)

2κ
ln

η

η0

+
iSn(0)

2κ
η − 1

κη
, (2.39)

W (η) = − iSt (0)

2κ
η

(
ln

η

η0

− 1

)
+

Sn(0)

4κ
η2 +

i

κ
ln

η

η0

, (2.40)

St (η) = St (0) + iSn(0)η, (2.41)

Sn(η) = Sn(0). (2.42)

The region of thickness � in which this asymptotic behaviour constitutes a good
approximation of the flow field is called the inner layer. Equation (2.42) means that
the total pressure ℘ = p + τll/3 is constant across this boundary layer:

∂z℘ = 0 (2.43)

and (2.41) that the shear stress decreases linearly with height according to

∂x℘ + ∂zτxz = 0. (2.44)

The tangential pressure gradient is balanced by the normal shear stress, which means
that inertial terms are negligible or equivalently that the fluid is in local equilibrium.
In terms of energy, the space variation of the internal energy (pressure) is dissipated
in ‘turbulent friction’. These two equations correspond to the standard lubrication
approximation for quasi-parallel flows.

2.4. Solving equations

In practice, we solve the equations using a fourth-order Runge–Kutta scheme with a
logarithmic step. The integration is started at an initial value of η inside the inner
layer which verifies η ln2(η/η0) � 1. We write the solution as a linear superposition
of the form X = X s + St (0)X t + Sn(0)Xn, where the different terms verify

d

dη
X s = PX s + S starting from X s(η) =

(
− 1

κη
,

i

κ
ln

η

η0

, 0, 0

)
, (2.45)

d

dη
X t = PX t starting from X t (η) =

(
1

2κ
ln

η

η0

, − iη

2κ

[
ln

η

η0

− 1

]
, 1, 0

)
, (2.46)

d

dη
Xn = PXn starting from Xn(η) =

(
iη

2κ
,

η2

4κ
, η, 1

)
. (2.47)

The boundary conditions on the bottom are then automatically satisfied, and the top
ones give algebraic equations on the real and imaginary parts of St (0) and Sn(0),
which can be solved easily. We have checked that the result is independent of the
initial value of η, as long as it remains in the announced range.

2.4.1. Results

The velocity and stress profiles resulting from the integration of (2.37) are displayed
in figure 2. In figure 2(c), one can clearly see the region close to the bottom where the
shear stress is constant, whereas the horizontal velocity component (figure 2a) exhibits
a logarithmic behaviour. This plateau almost coincides with the inner layer, which is
the zone where the solution is well approximated by the asymptotic behaviour derived
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Figure 2. Vertical profiles of the first-order corrections to velocities and stresses for η0 = 10−4.
ξ = η − kZ is the distance to the bottom, rescaled by the wavenumber. In (a–d ), the solid
lines represent the real parts of the functions, whereas the dotted lines represent the imaginary
ones. Dashed lines show the asymptotic behaviours (2.39)–(2.42) used as boundary conditions.
They match the solutions in the inner layer, which extends up to η � k� � 10−2 here. Close
to the boundary, a plateau of constant shear stress can be observed (S̃t (0) = A + iB), which
corresponds to the logarithmic zone. It is embedded into a slightly larger zone of constant
pressure in which the shear stress varies linearly.

above. The inner layer is embedded in a wider region characterized by a constant
pressure (figure 2d ). The thickness � of the inner layer is the scale at which inertial
terms are of the same order as stress ones in the Reynolds averaged Navier–Stokes
equations. The original estimation of � given by Jackson & Hunt (1975) was further
discussed in several later papers (see e.g. Taylor et al. 1987; Claussen 1988; Beljaars &
Taylor 1989; Finnigan et al. 1990). Our data are in good agreement with the scaling
proposed by Taylor et al. (1987):

�

λ

1

κ2
ln2 �

z0

= O(1). (2.48)

Consistently, this scaling relationship is precisely that obtained when considering the
first neglected terms in the asymptotic expansion (2.38). Away from the bottom, all
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Figure 3. Flow streamlines above a wavy bottom of rescaled amplitude kζ = 0.5 (aspect
ratio ∼ 1/6), computed from the linearized equations (η0 = 10−4). The flow direction is from
left to right. Note the left–right asymmetry of the streamlines around the bump in the inner
layer (grey lines). Note also the onset of emergence of a recirculation bubble in the troughs.
The thick line in the top right corner shows the positions that maximizes the velocity along a
streamline.

profiles tend to zero, so that one recovers the undisturbed flow field (2.4) at large η.
The shape of these profiles is very consistent with the work of Ayotte et al. (1994),
who have compared the influence of the closure scheme on the linear flow over a relief,
which means that the precise choice of the turbulent closure does not significantly
affect the results.

In order to visualize the effect of the bottom topography on the flow, the flow
streamlines are displayed in figure 3 (see the online Appendix for details about
streamlines computation). It can be observed that the velocity gradient is larger on
the crest than in the troughs as the streamlines are closer to each other. The flow
is disturbed over a vertical distance comparable to the wavelength. A subtler piece
of information concerns the position along each streamline at which the velocity is
maximum. These points are displayed in the right corner of figure 3. Away from the
bottom, they are aligned above the crest of the bump. Very close to it, however, they
are shifted upstream. In other words, the fluid velocity is in phase with the topography
in the upper part of the flow, but is phase advanced in the inner boundary layer
where the shear stress tends to its basal value. In this inner layer, the profile is
well approximated by its asymptotic expression (2.39). In the outer region (η � k�),
U decreases exponentially with the distance to the bottom (figure 2). Seeking for
asymptotic solutions decreasing as e−ση, one has to solve the eigenvalue problem
PX = −σ X for asymptotically large values of η. At the two leading orders, the
decrease rate σ is given by

2i
(
σ 4 + 1

)
κ2η +

(
σ 2 − 1

)
ln

η

η0

= 0. (2.49)

The asymptotic behaviour is an oscillatory relaxation corresponding to σ = (1 ± i)/
√

2.
However, the observed decrease corresponds to the intermediate asymptotic regime
η < ln(η/η0) for which the solution is σ = 1. This behaviour is reminiscent from that
of an inviscid potential flow. In other words, the effect of the turbulent shear stress
on the flow disturbance can be neglected, in this external layer.

The intermediate region between the inner and the outer layers is responsible for the
asymmetry of the flow as well as the upstream shift of the maximum velocity discussed
above. Let us emphasize again that this is the physical key point for the formation of
ripples. One can understand the reason of the phase shift with the following physical
argument. The external layer can be described as a perfect irrotational flow. Since the
elevation profile is symmetric, the streamlines are symmetric too, as the flow is solely
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Figure 4. Coefficients A, B and ratio B/A as a function of η0 = kz0. These plots show the
dependence of the basal shear and normal stresses with the number of decades separating
the wavelength λ from the soil roughness z0. The solid line corresponds to the results of the
model, using the asymptotic matching with the surface layer (L = z − Z). The dotted lines
correspond to a phenomenological mixing length L = z0 + z − Z. The dashed lines correspond
to the approximation used by Jackson & Hunt (1975). All curves agree well at very small η0.

controlled by the balance between inertia and the pressure gradient induced by the
presence of the bump. As a consequence, the velocity is maximum at the vertical of
the crest. Now, inside the inner layer, this flow is slowed down by turbulent diffusion
of momentum. Focusing on the region of matching between these outer and inner
regions, the velocity needs some time to re-adapt to a change of shear stress, due to
inertia. Thus, the shear stress is always phase advanced with respect to the velocity.
One concludes that the basal shear stress is phase advanced with respect to the bump.

The basal shear stress component in phase (A) and in quadrature (B) with the
topography is displayed as a function of η0 in figure 4. The ratio B/A is positive
as the shear stress is phase advanced. Their overall dependence with η0 is weak,
meaning that the turbulent flow around an obstacle is mostly scale invariant. More
precisely, following Jackson & Hunt (1975), Kroy et al. (2002) have shown that, for
asymptotically small η0, one expects logarithmic dependencies:

A =
ln2
(
Φ2/ lnΦ

)
2 ln3 φ

(
1 + lnφ + 2 ln

π

2
+ 4γE

)
and B = π

ln2
(
Φ2/ ln Φ

)
2 ln3 φ

, (2.50)

where γE � 0.577 is Euler’s constant, φ is defined by the equation φ ln φ = 2κ2Φ

and with Φ = π/(2η0). Note that A tends to 2 and B to 0 as η0 → 0, as expected
when the inner layer thickness � vanishes. In this limit, the basal shear stress is
directly proportional to the square of the velocity inherited from the outer layer,
which is solution of the potential flow problem. These expressions agree well with
our numerical results for very small η0. However, for realistic values of η0, e.g.
10−4 < η0 < 10−2, this approximation cannot be accurately used as it leads to errors
of order one – note that Jackson & Hunt’s expressions tend to diverge at larger η0.

Figure 4 also shows the results obtained for a particular model of surface layer,
which describes an hydrodynamically rough bottom. Then, the ‘small scale’ roughness
elements are larger than the viscous sublayer. They are submitted to a turbulent drag
from the fluid, and reciprocally, their presence slows down the flow. The exchanges
of momentum in the surface layer are thus dominated by the turbulent fluctuations.
Following Richards (1980) and others, a convenient phenomenological model is to
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define the mixing length involved in the turbulent closure (2.6) as L = z0 + z − Z.
In this way, L is still essentially the geometrical distance to the bottom, except that
it cannot be smaller than the roughness length. This choice reflects, in an intuitive
manner, the physical picture one can infer from experiments or simulations where
square-shaped roughness elements are glued on a flat wall (see e.g. Perry, Schofield
& Joubert 1969). One can see in figure 4 that, for η0 < 10−3, the values of A and B

match those obtained using the asymptotic matching with the surface layer. However,
one can note significant differences for η0 > 10−2. As the mixing length in the surface
layer is larger in this case (L ∼ z0) than that in the asymptotic case (L ∼ z − Z), the
turbulent ‘diffusion’ is more efficient. This results into a larger phase advance for the
shear stress (figure 4c).

In the online Appendix, we have tested the robustness of the results with respect
to the details of the model. The phase lag between the shear stress and the elevation
profile is mostly insensitive to:

(i) the introduction of a lag between the turbulent energy and the mean strain
tensor (second-order turbulent closure),

(ii) the Reynolds stress tensor anisotropy,
(iii) the dynamical mechanisms controlling the surface layer at moderate values of

the ratio λ/h0, and
(iv) a moving bottom, either growing or propagating.

In conclusion, for the study of ripples and dunes, these effects can be safely ignored.
In particular, the sediment bed can be considered as fixed to compute the flow field.

2.5. Effect of a free surface

In this section, we investigate the effect of the additional presence of a free surface
at a finite distance H to the bottom. This situation is relevant to the flow above river
dunes.

2.5.1. River equilibrium

In the case of a river inclined at an angle θ on the horizontal, the shear stress must
balance gravity. It thus varies linearly as τxz = g(z − H ) sin θ and vanishes at the free
surface. By definition of the shear velocity u∗, we also write τxz ≡ u2

∗(z/H − 1). In the
context of a mixing length approach to describe turbulence, this length should vanish
at the free surface. For the sake of simplicity, we take L = (z + z0)

√
1 − z/H . This

choice results in a base flow that is logarithmic, as in the unbounded situation:

ux =
u∗

κ
ln

(
1 +

z

z0

)
, (2.51)

which is consistent with field and experimental observations. The stress balance
equation along the z axis allows to get the pressure, which reads

p + τzz = p0 + g(H − z) cos θ = p0 +
u2

∗
tan θ

(
1 − z

H

)
. (2.52)

We define the Froude number as the ratio of the surface velocity usurface to the velocity
of gravity surface waves in the shallow-water approximation:

F ≡ usurface√
gH

≡ 1√
gH

u∗

κ
ln

(
1 +

H

z0

)
=

1

κ
ln

(
1 +

H

z0

) √
sin θ. (2.53)

In the literature, the Froude number is sometimes defined as the ratio of the mean
velocity to the velocity of gravity waves. We will justify this choice in the next
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paragraph. The Froude number of natural sandy rivers lies in general between 0.1
and 0.3 as they flow on very small slopes. Larger Froude numbers are reached in
flume experiments.

2.5.2. Disturbances

As above, we consider a wavy bottom Z = ζeikx and note again η = kz and
ηH = kH . We write the first-order corrections to the base flow as

ux = u∗
[
U + kζeikxU

]
, (2.54)

uz = u∗kζeikxW, (2.55)

τxz = τzx = −u2
∗

[
1 − η

ηH

+ kζeikxSt

]
, (2.56)

p + τzz = p0 + u2
∗

[
1

tan θ

(
1 − η

ηH

)
+ kζeikxSn

]
, (2.57)

where, in accordance with (2.51), the function U is defined by the relation

U(η) =
1

κ
ln

(
1 +

η

η0

)
. (2.58)

The free surface is also disturbed by the presence of the non-uniform bottom, and
we denote by H + Δ(x) the flow depth at the position x. The modified expression for
the mixing length then reads

L = (z0 + z − Z)

√
H + Δ − z

H + Δ − Z
. (2.59)

Linearizing the free surface profile as Δ(x) = δζeikx , L expends to the first order into

kL = (η + η0)

√
1 − η

ηH

⎧⎪⎪⎨
⎪⎪⎩1 − kζeikx

⎡
⎢⎢⎣ 1

η + η0

− 1

2ηH

− δ
η

2η2
H

(
1 − η

ηH

)
⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭ . (2.60)

The shear stress closure as well as the Reynolds averaged Navier–Stokes equations
can be linearized in the same way as before, and we finally get at the first order in
kζ a system of differential equations that can be written under the following form:

d

dη
X = PX + S + δSδ, (2.61)

with

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −i
U′

2

(
1 − η

ηH

) 0

−i 0 0 0

4

U′

(
1 − η

ηH

)
+ iU U′ 0 i

0 −Ui i 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.62)
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Figure 5. A and B as functions of η0 for F = 0.8 and H/z0 = 103 (solid line) or H/z0 = 104

(dotted line). The dashed line corresponds to the unbounded case (the same as in figure 4). The
curves collapse at large η0 but differ at small η0, showing a resonance peak and a divergence
at η0 → 0.

S =

⎛
⎜⎜⎜⎜⎜⎝

κU′2 − U′

2ηH

0

0

0

⎞
⎟⎟⎟⎟⎟⎠ , and �Sδ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

− ηU′

2η2
H

(
1 − η

ηH

)
0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (2.63)

2.5.3. Resolution of the linearized equations

Again, making use of the linearity of the equations, we seek the solution under the
form X = X0 + at X t + an Xn + δXδ , where these vectors are solution of the following
equations:

d

dη
X s = PX s + S with X s(0) =

(
− 1

κη0

, 0, 0, 0

)
, (2.64)

d

dη
X t = PX t with X t (0) = (0, 0, 1, 0) , (2.65)

d

dη
Xn = PXn with Xn(0) = (0, 0, 0, 1) , (2.66)

d

dη
Xδ = PXδ + Sδ with Xδ(0) = (0, 0, 0, 0) . (2.67)

The bottom boundary conditions U (0) = −1/(κη0) and W (0) = 0 are then
automatically satisfied. At the free surface, we impose the material nature of the
surface, W (ηH ) = iU(ηH )δ, and vanishing stresses: St (ηH ) = δ/ηH and Sn(ηH ) =
δ/(ηH tan θ). These last three conditions select the coefficients at and an as well as the
value of δ. Finally, note that the analytical approximation of the solution close to the
bottom in the limit η0 → 0 is the same as in the unbounded case – it does not depend
on the position of the upper boundary – and expressions (2.39)–(2.42) are thus still
correct in the limit H � z0.

2.5.4. Results

In order to evidence the role of the free surface, we have plotted the stress coefficients
A and B as functions of η0 in figure 5, for different values of H/z0. For a large enough
wavenumber k (a small enough wavelength λ), one recovers the unbounded case. This
means that for a bottom wavelength much smaller than the flow depth H (i.e. for
subaqueous ripples), the free surface has a marginal effect and the results of § 2.3
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Figure 6. Relative importance of the inner (white) and outer (grey) layers for kH = 1.65
(a, b), and kH = 0.03 (c), with H/z0 = 104. The velocity profiles (bold lines) are compared
with their asymptotic behaviour in the inner and outer layers (thin lines). The solid lines
represent the real part of the functions, and the dotted lines represent the imaginary ones. (a)
and (b) show the very same profile, but with a logarithmic scale in (a) to emphasize the inner
region. The thin lines in (a) and (c) represent the asymptotic behaviour in the inner layer.
Those in (b) correspond to a sum of an increasing and a decreasing exponential of the form
exp(±η), as for an inviscid potential flow.

apply. For smaller η0, however, the curves exhibit a peak, whose position depends
on the value of H/z0, followed by a diverging behaviour when η0 → 0. As discussed
below, this peak can be ascribed to a resonance of standing waves at the free surface,
excited by the bottom topography, meaning that the proper scale is now H and
not z0.

The analysis of velocity profiles for different values of kH gives the following
physical picture (figure 6). For kH > 1, as for the unbounded case, the flow can be
thought of as being divided into two regions: an inner layer close to the bottom, where
it can be described by the equilibrium approximation, and an outer layer behaving
like an inviscid potential flow, where the profiles can be decomposed into the sum
of decreasing and increasing exponentials e±η. For smaller values of kH , this outer
region progressively vanishes and the whole flow is controlled by the inner layer.

We display the phase and amplitude of the free surface as a function of kH in
figure 7(b,c). The peak in amplitude accompanied by the phase shift of π are the
signature of a surface wave resonance. The source of disturbances is the bedform
relief. For kH larger than its resonant value, the bottom and the free surfaces are
in phase; conversely, for kH below the resonance, they are in antiphase. In between,
at the resonance, the phase shift is ϕ = π/2 (figure 7a) so that the streamlines are
squeezed downstream of the crest. This resonance is model independent as it comes
from a very robust physical mechanism. As the fluid flows over the periodic bottom,
gravity surface waves are excited at the wavelength λ. The latter propagate at the
velocity:

c � usurface ±
√

g

k
tanh(kH ) = F

√
gH ±

√
g

k
tanh(kH ) (2.68)

with respect to the bottom. As in the sound barrier phenomenon, the wave energy
induced by the bottom disturbances accumulates when this velocity vanishes, i.e. for

F =

√
tanh(kH )

kH
. (2.69)
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Figure 7. (a) Streamlines of a flow over a sinusoidal bottom close to the free-surface resonance
conditions (ϕ = π/2). The flow is from left to right. Note the squeezing of the lines downstream
of the crest of the bump. Amplitude |δ| (b) and phase ϕ(δ) (c) of the free surface as a function
of kH for F = 0.8. The peak in amplitude and the phase shift from 0 to π correspond to the
resonance. The two schematics illustrate the situations in phase or in antiphase.

In the shallow-water approximation (kH � 1), this resonant condition gives F = 1
as standardly obtained in hydraulics. In the deep water approximation, it gives
F = 1/

√
kH or equivalently kH = 1/F2 (Kennedy 1963). Consequently, the flow is

subcritical with respect to the wavelength λ at low F and low kH and supercritical
at large F and kH . Ignoring dissipation, the Bernoulli relation states that the sum
of the gravitational potential energy ρgΔ and the kinetic energy (1/2)ρu2

surface is
constant along the free surface. The subcritical regime corresponds to deep slow
flows dominated by gravity: as the velocity increases over a bump, the corresponding
increase of kinetic energy must be balanced by a loss of gravitational potential energy.
As a consequence, the free surface is pinched over the bump (ϕ = π; see figure 7c).
The supercritical regime corresponds to thin rapid flows dominated by kinetic energy.
By conservation of the flow rate, a pinch of the free surface would lead to an increased
velocity. As the bump pushes up the free surface, the corresponding gain of potential
energy should be balanced by a decrease of kinetic energy which is achieved by a
deformation of the free surface in phase with the bump (ϕ = 0; see figure 7c). In
summary, the free surface responds in phase with the excitation at small wavelength
and becomes delayed as λ/H increases. As in a standard second-order linear system,
the disturbance and the system response are in quadrature at the resonance.

The phase ϕ and the rescaled amplitude |δ| of the free surface are displayed in
figure 8(a, b) for different values of F. One can see that the amplitude of the
resonance increases with the Froude number. For very small F, the phase curve is
more complicated to interpret, but note that this corresponds to a vanishing amplitude
δ: the resonance essentially disappears. For kH → 0, one recovers the predictions
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Figure 9. A and B as functions of kH , for F = 0.1 (dotted dashed line), F = 0.8 (dotted
line) and F = 1 (solid line). The dashed lines correspond to a rigid boundary at the same
height H . The plots have been computed for H/z0 = 103. Comparing a free surface to a rigid
boundary condition (or to the case H � λ), it can be inferred that the hydrodynamics is
controlled by the surface waves. In particular, the resonance leads to a drop of the shear stress
component B , i.e. to a downstream shift of the point of maximum shear stress.

of Saint-Venant equations: the pressure horizontal gradient becomes much smaller
than the shear stress vertical gradient so that the free surface follows the bottom
topography (δ = 1, ϕ = 0).

The basal shear stress and pressure and subsequently the coefficients A and B are
modified by the presence of the free surface when kH is of order one and below.
In figure 9, the coefficients are plotted as functions of kH for different values of
the Froude number. One can see that the resonance peak is more pronounced for
larger F – they are actually not visible when F is too small. In agreement with the



Ripples and dunes in a turbulent stream 307

streamlines of figure 7(a), which shows a squeezing downstream of the bump crest,
the peak of B is negative, corresponding to a phase delay of the stress with respect
to the bottom. Furthermore, the curves corresponding to the presence of a rigid lid
at the same height H do not exhibit these peaks. Finally, the large negative values of
B as kH → 0 also result from a free surface effect as, in the same limit, B reaches
a positive plateau in the case of a rigid top boundary. In this limit, inertial effects
become negligible and the flow is at equilibrium between gravity and friction. As
a consequence, the basal shear stress is asymptotically in quadrature with the relief
(B < 0 and A → 0).

As a conclusion, there are two situations in which the excitation of standing waves
by the topography affects significantly the characteristics of the inner layer: (i) around
the resonance, since the surface wave amplitude is very large and (ii) for vanishing
kH , when the distance H between the topography and the free surface becomes so
small that the inner layer invades the whole flow.

3. Primary linear instability: subaqueous ripples
3.1. Sediment transport: the saturation length paradigm

The different modes of sediment transport by a fluid (bed load, saltation, reptation,
sheet flow and suspended load) and the different dynamical mechanisms controlling
this transport (hydrodynamical erosion of the bed, splash, mixing by turbulent
fluctuations, etc.) can be described in a common general framework with only few key
variables. The reference situation is a uniform turbulent boundary layer of constant
shear velocity u∗ over a flat sand bed characterized by a threshold shear velocity uth.
In this situation, one observes a steady uniform transport characterized by a flux qsat

called the saturated flux, which corresponds to an equilibrium state between flow and
transport. Note that qsat is a function of u∗ and uth. Considering a heterogeneous
situation – for instance a spatial variation of the shear stress – the sand flux is not
instantaneously in equilibrium with the local shear stress. In most of the situations,
the transient towards equilibrium can be described by a first-order relaxation law,
with a single time and length scales:

Tsat∂tq + Lsat∂xq = qsat − q, (3.1)

where the flow goes in the increasing x direction. In a situation homogeneous in
space, Tsat is the time needed for the flux to reach saturation if the flow speed
suddenly changes. Conversely, in a steady situation where there is no sediment flux
at the entrance of a volume of control, Lsat is the length needed for the flux to
reach qsat . As the relaxation time is usually much smaller than the time scale of
evolution of the bedform, we are left with a description of the transport by three
variables: the saturated flux qsat , the threshold shear velocity uth and the saturation
length Lsat . Note, in particular, that gravity effects are included into the transport
threshold. This multi-scale approach allows us to separate clearly the dynamical
mechanisms that govern the emergence of bedforms from those governing sediment
transport. This framework lies on two important assumptions. First, the depth of the
inner layer in which the shear stress is vertically homogeneous should always remain
larger than the depth of the transport layer. Second, there is in general more than
one relaxation mode and, consequently, a whole spectrum of relaxation times and
lengths. The description by a first-order relaxation implies that one of these modes is
significantly slower than (and thus dominant in front of) the others. Otherwise, two
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or more saturation lengths have to be taken into account in a higher-order relaxation
equation.

The subaqueous sediment transport presents four regimes (see the review by
Andreotti 2009).

(i) Erosion limited regime. Close to the threshold, only a small fraction of the grains
at the surface is entrained and this erosion process takes some time to occur. The
concentration of mobile grains is not sufficient to induce a significant reduction of the
flow strength. The grains transported in this dilute situation are isolated from each
other. The transport reaches equilibrium when deposition balances erosion (Charru,
Mouilleron-Arnould & Eiff 2004). The saturated flux is controlled by the erosion time
and the disorder of the bed. The saturation length Lsat is then the mean length of
the trajectory of one grain between two trapped states. We introduce the fraction
N(Θ) of grains at the surface susceptible to be entrained at a Shields number Θ ,
which reflects and encodes the distribution of potential wells at the sand bed surface.
In the absence of flow, for Θ = 0, N is null. It increases very quickly around the
mean threshold Shields number Θth and reaches 1 at a second threshold ΘM . The
mean area explored by the grain is Lsatd and contains, by definition, a mean number
of potential wells sufficiently deep to trap the grain equal to 1. We then obtain the
expression of the saturation length:

Lsat =
d

1 − N(Θ)
. (3.2)

Here, Lsat is equal to one grain diameter d at Θth and diverges at ΘM . This divergence
has been directly evidenced experimentally in the viscous case by Charru et al. (2008).

(ii) Suspended regime. For sufficiently small grains, at larger Shields numbers, the
turbulent velocity fluctuations become dominant as they induce drag force fluctuations
on the order of gravity. In such a turbulent suspension, the feedback of sediment
transport on the flow may still be neglected. The transport reaches equilibrium due to
the finite thickness H of the flow, when the sedimentation flux balances the upward
turbulent diffusion flux. In rivers, at moderate Froude numbers, ripples and dunes
are composed of grains sufficiently heavy to prevent suspension.

(iii) Momentum limited regime. For sufficiently large grains, the erosion-limited
regime is left at moderate Shields numbers for a regime in which the transport
becomes limited by the available momentum: each time the flow entrains a grain
from the bed and accelerates it, this grain exerts in turn a stress on the fluid. The
transition from erosion to momentum limited regimes takes place below ΘM , when
the concentration of transported grains becomes important. Saturation is reached
when the fluid-borne basal shear stress has been so much reduced that deposition
balances erosion. The saturation length is then given by the length needed by the
grain to reach its asymptotic velocity – the so-called drag length. The modelling of
the drag length is a difficult problem as the trajectory takes place in a turbulent flow
whose fluctuations are not due to the motion of the grain itself. The problem is thus
very different from that of a sphere moving in a fluid at rest, a problem for which
the drag law is calibrated. To the best of our knowledge, the motion of a sphere
whose diameter lies in the inertial range of the turbulent flow is still an open problem.
We are thus left with the standard drag force formula (π/8)Cdρf U 2d2, with a drag
coefficient of order one. Then, solving the equation of motion, one obtains a drag
length and thus a saturation length around:

Lsat � 2
ρs

ρf

d. (3.3)
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(iv) Sheet flow regime. As the Shields number increases, more and more grains are
transported, and one reaches a regime of dense suspension where the transport is
located in a dense thick granular layer (Bagnold 1956). Saturation is still due to the
negative feedback of transport on the flow. The saturation length has not yet been
derived for this two-phase flow regime. As natural rivers flow at Shields numbers
slightly above the threshold, the transport is usually not sufficiently dense to form a
sheet flow.

Here, we adopt a convenient parametrization of the saturated flux, valid for the
different transport regimes:

qsat = χu
2γ
∗
(
u2

∗ − u2
th

)
. (3.4)

For instance, the self-consistent model derived by Andreotti (2009) for the momentum
limited regime gives γ = 0, whereas the Bagnold (1956) formula involves an exponent
γ = 1/2. Other empirical models such as Meyer-Peter & Müller (1948), Einstein
(1950) or Yalin (1963) can also be approximated in this way.

3.2. Linear stability analysis

We consider a periodic disturbance of the bed profile Z. As the base state is
homogeneous, we can seek for modes of the form exp(σ t + ik(x − ct)). Taking
the Fourier transform, noted with a circumflex (ˆ), the shear stress induced by the
wavy sand bed reads u2

∗(A + iB)kẐ. The computation of the coefficients A and B has
been performed under the assumption that the sand bed is static. As a matter of fact,
the growth rate σ is related to the sediment transport and is on the order of qsat/L

2
sat .

Experimentally, σ is usually found to be 4 orders of magnitude smaller than the
typical flow shear rate: the time scale of formation of subaqueous ripples is typically
10 s to be compared with few tens of microseconds for the period at which the flow
is excited by the dune relief, λ/U . Therefore, the normal velocity of the grain–fluid
interface does significantly change the flow in this problem (Fourrière et al. 2009).
The threshold shear stress is a function of the slope tan α (Fernandez Luque & van
Beek 1976; Yalin & Karahan 1979; Loiseleux et al. 2005; Andreotti 2009):

ûα
th = uth

ikẐ

2μ
, (3.5)

where μ is the avalanche slope. At linear order, the saturated flux qsat (u∗, uth) reads

q̂sat =
∂qsat

∂u∗

u∗

2
(A + iB)kẐ +

∂qsat

∂uth

uth

2μ
ikẐ. (3.6)

Introducing the reference flux Q = (γ + 1)χu
2(γ+1)
∗ the above expression takes the

form

q̂sat = Q(a + ib)kẐ, (3.7)

where a and b are the components of the saturated flux in and out of phase with the
topography:

a = A − γA

1 + γ

u2
th

u2
∗

and b = B − γB + μ−1

1 + γ

u2
th

u2
∗
. (3.8)

For asymptotically large shear stresses, i.e. u∗ � uth, a tends to A and b tends to B ,
independent of γ and μ. Close to the threshold (for u∗ � uth), a tends to A/(1 + γ )
and b tends to (B − μ−1)/(1+ γ ). The flux relaxes to its saturated value with a spatial
lag Lsat :

ikLsat q̂ = q̂sat − q̂. (3.9)
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Figure 10. Dispersion relation for μ = tan 32◦ and uth � u∗. (a) Growth rate σ as a function
of the wavenumber rescaled by the saturation length kLsat . (b) Propagation speed c and Q is
the reference flux.

Using the conservation of mass ∂tZ + ∂xq = 0, one obtains the dispersion relation

σ − ikc = −ik
q̂

Ẑ
= − ik

1 + ikLsat

q̂sat

Ẑ
= − iQ(a + ib)k2

1 + ikLsat

. (3.10)

Splitting the equation into its real and imaginary parts, one obtains the growth rate
σ and the propagation speed c:

L2
satσ

Q
=

(kLsat )
2(b − akLsat )

1 + (kLsat )2
, (3.11)

Lsatc

Q
=

(kLsat )(a + bkLsat )

1 + (kLsat )2
. (3.12)

This corresponds to a standard convective instability at large wavelengths (figure 10).
The cutoff wavenumber kc above which modes are stabilized by the saturation length
is given by

kcLsat =
b

a
. (3.13)

Note that the instability can present a different threshold than that for the transport
if b vanishes at some value of u∗ larger than uth, i.e. if B is smaller than μ−1. In the
first approximation, a and b are weak functions of kz0. Then, one can approximate
the maximum growth rate wavenumber kmax as

kmax Lsat � X−1/3 − X1/3 with X = −b

a
+

√
1 +

(
b

a

)2

. (3.14)

As the instability is convective, we have also computed the spatial growth rate. Its
maximum nicely coincides with that of the time growth rate.

It can be inferred from the conservation of mass that the propagation velocity c

is proportional to the difference of flux δq between trough and crest and inversely
proportional to the ripple height 2ζ – this is the so-called Bagnold relation in the
aeolian context. At large wavelength λ, δq is proportional to the reference flux Q and
to the height so that the propagation speed varies as c ∝ Q/λ. This is confirmed by
figure 10(b), which shows a roughly linear relation between c and k.

3.3. Ripples wavelength selection

The fastest growing wavelength λmax can be computed, taking into account the
dependencies of A and B on kz0. There are two length scales in the problem: z0,
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Figure 11. (a) Wavelength λmax of maximum growth rate as a function of the ratio of the
two characteristic length scales z0/Lsat , in the limit u∗ � uth, for μ = tan 32◦ and γ = 0.
Solid line: ratio λmax/Lsat . Dotted line: ratio λmax/z0. (b) Wavelength λmax rescaled by Lsat as
a function of the rescaled shear velocity u∗/uth for Lsat /z0 = 80 (typical subaqueous case with
sand grains). The curves correspond to μ = tan 32◦ and γ = 0 (solid line), to μ = tan 32◦ and
γ = 1/2 (dotted line), to μ = tan 24◦ and γ = 0 (dashed line) and to μ = tan 70◦ and γ = 0
(dot–dashed line).

which is an hydrodynamical quantity, and Lsat , which is related to the sand transport.
Figure 11 shows that the saturation length controls the scaling of λmax if Lsat is larger
than z0. In this case, the wavelength is the product of a non-dimensional prefactor
of hydrodynamical origin (function of b/a; see (3.14)) by the transport saturation
length. Conversely, z0 controls the scaling of λmax if it is larger than 10 Lsat . In this
case, the maximum growth rate is directly related to the maximum of the function
B(kz0) (figure 4b). This could be the case in the hydraulically smooth regime for
which z0 scales on ν/u∗ (Sumer & Bakioglu 1984). For subaqueous ripples, the
measurements of initial wavelength are usually larger than 100 d , whereas z0 is on the
order of 0.1 d . If the scaling was controlled by z0, one would underestimate the most
unstable wavelength by 2 orders of magnitude. As a consequence, the wavelength
scales on the transport saturation length Lsat . This means that models in which the
flux is a function of the shear stress cannot capture correctly the physics of ripple
instability. The second conclusion is that, although the saturation length may be
determined by different dynamical mechanisms, aeolian dunes are of the same nature
as subaqueous ripples. In other words, different modes of sediment transport (e.g.
saltation and reptation bed load) in different situations (e.g. viscous and turbulent)
can lead to bedforms instabilities of same nature (see Hersen, Douady & Andreotti
2002; Charru 2006; Claudin & Andreotti 2006). Note that aeolian ripples do not
belong to the same class of bedforms as they result from a screening instability
(Bagnold 1941; Anderson 1987, 1990; Andreotti, Claudin & Pouliquen 2006), not
from a hydrodynamical instability.

Figure 11(b) shows that the transport model has a negligible influence on the
selected wavelength. This indicates that Lsat and qsat are the single two relevant
quantities encoding the sediment transport details. Because of the stabilizing role of
gravity encoded in the slope dependence of the threshold, λmax increases close to the
threshold shear stress. Of course, this effect is very sensitive to the value of μ, as shown
in figure 11(b). For natural sand grains (μ = tan 32◦), the wavelength λmax decreases
from 30 Lsat at the threshold to 20 Lsat far from it. For glass beads, the prediction is
very different depending whether one takes the avalanche slope (μ = tan 24◦) or the
experimental data of Loiseleux et al. (2005) (equivalent to a fictitious μ = tan 70◦)
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Figure 12. Saturation length in water determined from experimental measurements of the
initial wavelength as a function of the shear velocity for different types of particles. (a) Glass
beads (Langlois & Valance 2007): d = 250 μm (◦) and d = 500 μm (�). (b) Natural sand grains
(Coleman & Melville 1996 and Baas 1999): d = 210 μm (�), 240 μm (�), d = 830 μm (�). The
solid lines correspond to the best fit of (3.2). These curves tend to diverge for u∗ = uM � 4.5 uth

or equivalently for Θ = ΘM � 20 Θth. In (a) and (b), the small factor between small and large
grains could be due to a subdominant dependence of Lsat on viscosity.

for the slope effect. In the latter case, λmax is almost independent of u∗ whereas it
diverges at the threshold in the former case as B is then of the order of 1/μ.

3.4. Comparison with experiments

Rather than predicting the wavelength and comparing it with experimental data, we
can invert the process and determine the value of the saturation length that would give
the observed wavelength. This allows us to remove the dependence of the wavelength
with respect to u∗ due to the slope effect. For this, μ is taken equal to the avalanche
slope. Most of the experimental data available in the literature correspond to well-
developed ripples. As these bedforms exhibit pattern coarsening, it is very important
to focus on papers reporting the initial wavelength (linear regime), measured for grain
sizes larger than 200 μm (hydraulically rough sand bed). We have selected five such
data sets (Coleman & Melville 1996; Baas 1999; Langlois & Valance 2007).

As shown in figure 12, they present consistent trends, which is not the case for the
data obtained with smaller grains (d ∼ 100 μm). The saturation length is found to
be on the order of several grain diameters. It is slightly smaller for the glass bead
experiments than that for the natural sand grain ones. The data points around the
threshold are very sensitive to the values taken for μ and uth in the model and should
not be overinterpreted. The slight increase of Lsat with u∗ is more robust, although
it is based on the last few data points. More significant is the decrease of the ratio
Lsat/d when d increases, a feature present for both glass beads and sand grains. It
could be related to a subdominant dependence on viscosity.

We have discussed above the two simplest possibilities for the dynamical
mechanisms limiting the transport saturation: erosion and inertia. Concerning erosion,
the prediction Lsat ∝ d/(1 − N(Θ)) is almost impossible to verify as the distribution
of potential wells at the surface of the bed is not known. Still, with the simple
parametrization chosen above, one expects the saturation length to scale on the grain
size and to gently increase with u∗. The solid line in figure 12(b) is the best fit by
such a form. One obtains the estimate ΘM/Θth ∼ 20. This value is far above the ratio
around 2 that has been found experimentally by Charru et al. (2008). It means that
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Figure 13. Comparison between the saturation length, rescaled by (ρs/ρf ) d , in the aeolian
(�) and subaqueous (other symbols; see figure 12) cases. For aeolian dunes, Lsat is determined
from the most unstable wavelength under well-characterized winds (Andreotti, Claudin &
Pouliquen 2009). For subaqueous ripples, each point of this graph corresponds to the very
same data as in figure 12, but averaged over six measurements. The dashed line corresponds
to the entrainment threshold. The solid line is the average over the different points measured
in the aeolian case: Lsat � 1.66 (ρs/ρf ) d .

the erosion length is probably not the mechanism limiting saturation. Otherwise, one
would expect a much more rapid increase of the saturation length. Instead, one can
observe that it is almost constant, with a subdominant, slow increase with u∗.

Figure 13 aims to test the second simple possibility: an inertia-limited saturation
length. In this case, one expects a scaling law of the form Lsat ∝ (ρs/ρf ) d similar to
that observed for aeolian sand transport (Hersen et al. 2002; Andreotti 2004; Claudin
& Andreotti 2006; Andreotti & Claudin 2007). We have used the measurements of the
wavelength at which aeolian dunes form reported in Andreotti et al. (2009), obtained
either in the field or using aerial photographs. Using the inversion method proposed
here, the saturation length Lsat has been obtained for different values of the wind
shear velocity (figure 13) and is mostly independent of it. Once rescaled by ρs/ρf d ,
Lsat is of the same order of magnitude for both aeolian dunes and subaqueous ripples.
In the first approximation, all series of data, considered separately, are independent
of u∗. A better agreement with aeolian data is observed for glass beads and large
grains. A discrepancy by a factor of two is observed for small natural sand grains.
As a possible interpretation, the grains roll on the ground during their phase of
acceleration, which may lead to underestimate the length needed to reach the fluid
velocity. One expects rough sand grains to be more sensitive to this effect.

4. Effect of the free surface
4.1. Dispersion relation

In the previous section, both hydrodynamic and erosion aspects have been gathered
to study bedforms under an infinite depth assumption, i.e. ripples. However, rivers
have a free surface at a finite height H . We expect these additional ingredients to
significantly change the shape of the dispersion relation. We have computed above the
basal shear stress coefficients (A and B) in that case (figure 5). The large wavenumbers
are insensitive to the free surface. By contrast, A and B display a resonance peak
around kH � 1/F2 and have a divergent behaviour as k → 0. As σ and c are directly
related to A and B through (3.11) and (3.12), they both present the same features.
In figure 14(a), the growth rate is represented as a function of kz0 for three different
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Figure 14. Growth rate σ and propagation velocity c as functions of the wavenumber k for
different values of H/z0 (H/z0 = 5000, 10 000, 20 000) and the typical values of parameter
F = 0.8, μ = tan 32◦, uth/u∗ = 0.8 and Lsat /z0 = 80. In (a), σ is rescaled by Lsat and k by
z0, whereas in (b–d ) all lengths are rescaled by the relevant length scale H , so that all curves
collapse in region where kH � 1. The dashed line represents the reference unbounded case
presented in the previous section. In (c), because of the log scale, the absolute value of σ is
displayed and the grey areas encode for negative values of the growth rate.

values of H/z0. All curves collapse in the large-k region on the dispersion relation
computed in the reference unbounded case. In particular, they exhibit a maximum
for the same wavenumber, which corresponds to the initial ripple wavelength. This
means that the presence of the free surface does not influence the formation of ripples
as long as H and Lsat are well-separated length scales. In a zone around kH � 1/F2

(figure 14b), the function σ (k) presents, in comparison to the reference unbounded
case, a sharp dip that can be attributed to the resonance of gravity surface waves.
As shown in figure 15(a), the width and the amplitude of this dip is very sensitive to
the value of the Froude number. For small F, the effect of the resonance is marginal
and the dip is very small. As the Froude number increases, the dip becomes more
pronounced so that the growth rate σ becomes negative in an enlarging range of
wavenumbers: the free surface stabilizes wavelengths commensurable with the flow
depth. Last, the semi-logarithmic plot of figure 14(c) reveals the behaviour of the
growth rate in the small-kH limit: σ (k) tends to 0 from below. This indicates that the
very large wavelengths are also stabilized. In the intermediate range of wavelengths, a
slight increase of the growth rate is observed. The other output of the linear stability
analysis is the propagation velocity of the pattern c(k) (figure 14d ), which is also very
sensitive to the resonance at kH � 1/F2. It presents a sharp maximum on the left of
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Figure 16. Stability diagram parametrized by the Froude number F and the rescaled
wavenumber kH . The marginal stability curves (σ = 0), shown in solid lines, separates
the unstable zone (white) from the stable ones (grey). The overall maximum growth rate (bold
dotted line) is always reached for ripples. The local maximum of the growth rate resulting
from the resonance of standing surface waves is shown by the thin dotted line. The dashed
line (c = 0) separates upstream (c < 0, dark grey) from downstream propagating bedforms.
The other parameters are set to H/z0 = 10 000, μ = tan 32◦, uth/u∗ = 0.8 and Lsat /z0 = 80.

the resonance followed by a dip on the right of it. At this dip, c can become negative
for sufficiently large Froude numbers (F � 0.7).

4.2. Dune formation

Gathering the different dispersion relations in the (F, kH ) space, one produces the
stability diagram (figure 16). The central region delimited by the two marginal stability
curves corresponds to the zone of unstable wavelengths (σ > 0). Large k are stabilized
by the saturation length, which explains the lack of dependence on the Froude number
in this zone: both the marginal stability and the maximum growth rate curves are
vertical lines in the diagram. This simply reflects the fact that ripples do not feel the
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free surface: they disturb the flow over a thickness of the order of the wavelength
λ, i.e. much smaller than H . As already mentioned, the most unstable mode always
corresponds to ripples (dotted vertical line in the large-k zone of figure 16).

A second zone of stable modes is located around the resonant conditions, when
the surface wave amplitude reaches a maximum (figure 7b). The waves are in phase
for wavenumbers above the resonance and in antiphase below it (figure 7c). At the
resonance, the free surface is in quadrature with the bottom, which tends to move
downstream the point of maximum shear stress, i.e. to stabilize the bedform. Of
course, as the influence of the free surface on the flow is localized over a typical
distance λ, its effect is more important as kH becomes smaller. In summary, there are
two conditions under which the free surface can overcome the inertial destabilizing
effect: (i) around the resonance, because the standing wave amplitude is very large and
(ii) in the limit of small wavenumbers, as H becomes much smaller than wavelength
λ. It can be observed in figure 16 that a sharp stable zone surrounds the resonant
curve. For obvious reasons, this new minimum of the growth rate associated with the
surface wave resonance comes with a local maximum of σ (thin dotted line along
the re-stabilized zone). In the work of Richards (1980), the latter has been associated
with the formation of dunes by a linear instability. In many other linear analyses, the
prediction of ripples is missed – the corresponding maximum in the dispersion relation
is absent – either because the inner layer responsible is not described (Kennedy 1963;
Reynolds 1965; Engelund 1970; Fredsøe 1974; Coleman & Fenton 2000) or because
the sediment transport is not correctly described (Colombini 2004; Colombini &
Stocchino 2005). As a consequence, they are left with a unique peak in the region
of kH around unity, which is found here to be a secondary maximum. As explained
below, we fundamentally disagree with the conclusion reached in all these papers that
subaqueous dunes result from the linear instability of a flat bed.

Let us briefly recall the basic reasons for which one usually associates the
appearance of a pattern to a maximum of the growth rate. One considers that the
initial condition Z(t = 0) is essentially flat, with some wide-band noise. Its Fourier
transform Ẑ(k, t = 0) then contains some energy in a wide range of wavenumbers k.
In the linear regime, the surface profile reads

Ẑ(k, t) = Ẑ(k, t = 0)eσ (k)t . (4.1)

If the distribution of initial amplitude is initially sufficiently flat and if the growth
rate σ (k) presents a sharp absolute maximum in kmax , then a pattern dominated by
the corresponding wavelength λmax emerges, as this mode grows the fastest. In the
present case, the amplitude of this secondary maximum close to the resonance is
almost the same as the value of σ at the same wavenumber in the unbounded case.
Moreover, most of the modes between the resonance and the ripple peak are in fact
much more unstable: if a linear instability could be invoked, the amplitude of all
these intermediate modes would eventually be larger than that of this local maximum.
Furthermore, the ratio of the primary and the secondary maxima of the growth rate
is on the order of (H/Lsat )

2, which is a large number: it is typically on the order of
104 for flume or small river experiments (d � 400 μm and H � 40 cm) and 106 for
a large river (d � 400 μm and H � 4 m). For example, taking half a minute for the
characteristic ripple apparition time (figure 17a), it would give ∼ 3 days for the dune
linear growth time scale, i.e. much too large in comparison to observations (figure 18).
For these reasons, this secondary peak in the dispersion relation cannot be associated
with dunes.
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Figure 17. Formation of ripples in a natural river, starting at t = 0 from a flat sand bed.
The experiment was performed in the Leyre river, at Sauniac bridge, on 16 September 2008,
for H = 52 cm, F = 0.21 and u∗ = 3 cm s−1. The sediment is well sorted with a mean grain
size d = 320 ± 70 μm. (a) Amplitude 2ζ of the bed disturbances as function of time t . Here,
ζ is determined from the auto-correlation of the bed profile Z(x, t). The solid line is the best
fit by (5.2) and gives σ = 3 × 10−2 s−1 or equivalently σ −1 = 35 s. (b) Bed elevation profile
measured by taking a picture of the bed enlightened by an inclined laser sheet. Low amplitude
ripples can be detected from t = 25 s after flattening the sand bed. Nonlinear effects make
the amplitude saturate around t = 100 s and a clear avalanche slip face can be observed at
t = 150 s. During this linear stage, the wavelength λ ∼ 90 mm does not evolve significantly
(figure 18b). Beyond this initial phase, a pattern coarsening towards dunes is observed, which
saturates at λ � 20 cm and ζ = 4.5 mm after typically 1 h: tracking the pattern during further
∼14 h, we did not observe any significant change of these characteristics.

Let us contrast this subaqueous situation to that of aeolian ripples superimposed
on aeolian dunes. As already mentioned, the instability mechanism of these dunes
is of the same hydrodynamics nature as that of subaqueous ripples, i.e. it comes
from the upwind shift of the basal shear stress with respect to relief. Aeolian ripples,
however, are generated by a screening instability: the upwind face of ripples receives
more impacts of saltating grains than the downwind face (Bagnold 1941; Anderson
1987, 1990). Rapidly, nonlinearities make the ripple pattern saturate to a wavelength
much smaller than that at which dunes emerge, and this saturation is faster than
the dune time formation. One can then consider that dunes result from the linear
instability of a flat bed that presents saturated aeolian ripples. Moreover, the growth
rate at the wavelength of ripples in the dune instability is negative, because ripples
are smaller than the aeolian saturation length. Conversely, the growth rate at the
wavelength of dunes in the ripple instability is much smaller than the growth rate
at the same wavelength in the dune instability. In conclusion, aeolian ripples and
aeolian dunes can truly be associated with two different linear instabilities. In the
case of subaqueous ripples and dunes, none of these criteria (different destabilizing
mechanisms, saturation of ripples wavelength, separation of the modes by several
decades of almost non-growing wavelengths) is fulfilled.

5. Field experiments
In this last section, we present direct experimental evidences that river dunes do

not form by a linear instability. We will discuss our field measurements in the light



318 A. Fourrière, P. Claudin and B. Andreotti

(a)

(b)

λ
(mm)

λ
(mm)

t (s)

t (s)

100

50

0 10050

500

400

300

200

100

0 600050004000300020001000

(c)

(d) (e)

Figure 18. (a–c) Formation of dunes in a natural river, starting at t = 0 from a flat sand
bed. The experiment was performed in the Leyre river, at Mios bridge, on 17 September 2008,
for H = 50 cm, F = 0.28 and u∗ = 4 cm s−1. The grain size is d = 330 ± 70 μm. (a)
Time evolution of the wavelength λ. The pattern coarsening starts after 150 s and stops after
∼4000 s. (b) Same graph, but restricted to the linear regime (between t = 0 and t = 150 s). (c)
The photograph shows the dunes of wavelength 40 cm formed after 6000 s. (d ) Formation of
mega-dunes, starting from a flat sand bed. The experiment was performed in the Leyre river,
at Mios bridge, for H = 44 cm, F = 0.30 and u∗ = 4 cm s−1. The sand is polydisperse: it is a
mixture of sand grains of size ∼330 ± 70 μm, which cover 60 % of the surface, and of coarse
grains larger than 600 μm, which represent 40 % of the surface – but 9 % of the grains and
60 % of the mass. The photograph shows 3 m long mega-dunes with ∼40 cm superimposed
dunes. (e) Photograph of the Leyre river at Mios bridge showing the sharp transition between
dunes (zone of medium sand) and mega-dunes (zone of medium and coarse sand mixed).

of the model proposed here and show reciprocally that all existing observations
are consistent with this model. We will finally propose a new definition of the
different subaqueous bedforms, based on the physical mechanisms that control their
formation.
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5.1. Formation of ripples

We have studied the formation of ripples, dunes and mega-dunes in the Leyre river.
This river is located in the southwest of France, in a region called ‘les Landes de
Gascogne’ (44◦32′N, 0◦52′W). It flows in a particularly homogeneous basin, both in
terms of the nature of the ground (rather sorted sand grains) and of the vegetation.
Except during flooding events, bed load is the dominant mode of transport. The size
of the grains on the river bed is around d = 330 μm. The experiments have been
performed at the end of summer (low water period) in two straight and flat portions
of the river.

The experiments were conducted as follows. Using long parallel metallic bars, the
surface of the sand bed was carefully levelled at time t = 0, and the formation of
bedforms was directly observed. In order to measure the emergence of ripples, we used
a (water proof) laser sheet inclined at a low angle to the horizontal. Taking pictures
through a glass plate from the top, we have determined the height profile Z(x, t)
along this line as a function of time. Figure 17(b) shows the evolution of one such a
ripple from the initial stage where it is symmetric to the time when an avalanche slip
face develops. To determine the wavelength λ and the amplitude 2ζ of the ripple, we
computed the auto-correlation of the profile C(X) = 〈Z(x)Z(x + X)〉. Typically, 25 s
after the beginning of the experiment, C shows a secondary maximum whose position
gives λ and whose amplitude gives ζ . During the first 150 s, the wavelength does not
evolve much (figure 18b) whereas the amplitude grows and saturates (figure 17a). As
the final amplitude is not very large compared to the grain size d (and thus the initial
noise level), it is difficult to get an indubitable evidence of an exponential growth.
Still, the curves we obtained are consistent with a linear regime over a factor of two
in amplitude (figure 17a). As the first nonlinear correction to the basal shear stress
at the wavenumber k goes like the cube of the aspect ratio, we expect an amplitude
equation of the form

dζ

dt
= σζ

[
1 −
(

ζ

ζ∞

)2
]

, (5.1)

whose solution is

ζ =
ζ∞√

1 + exp(−2σ t)
. (5.2)

One can see in figure 17(a) that the fit of this relation to the data is very good, so
that observations are consistent with a formation of ripples by a linear instability
saturated by nonlinear hydrodynamical effects. Importantly, the rescaled growth rate
σ/(ku∗) is around 10−3 and the rescaled propagation speed ω/(k u∗) is around 10−2.
As shown in § 2, with such small dimensionless numbers, the motion of the bed can
be ignored in the hydrodynamical treatment.

5.2. Formation of dunes and mega-dunes

We have observed the evolution of the patterns for typically 2 h after flattening
the sand bed (figure 18a). A statistically stationary state is eventually reached, which
corresponds to what was observed in the natural conditions, i.e. before the experiment
(figure 18c). As in flume experiments (Venditti et al. 2005a,b; Langlois & Valance
2007), we have observed a coarsening of the ripple pattern, i.e. a progressive growth
of the wavelength by merging of bedforms (Raudkivi & Witte 1990; Raudkivi 2006).
Figure 17(a) shows that this growth is linear in time and stops when the wavelength
λ becomes on the order of the flow depth H . Both these processes and the time scales
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over which they take place are consistent with the observations of Guy et al. (1966) for
flume experiments at larger Froude numbers. Again, with a bed motion at the scale
of hours, the approximation of a flow over a steady relief is almost perfect. Consistent
with the theory, we did not observe the emergence of wavelengths directly at the scale
of the flow depth. Note that in the flume experiments of Carling, Richardson & Ikeda
(2005), the large grain size (5 mm) and the moderate water depth (0.375 m) are such
that the typical size of the first emerging bedforms (few decimeters) is comparable.
We thus reach the conclusion that the formation of dunes should not be associated
with a linear instability but to a nonlinear pattern evolution. In the unbounded case
(an infinite flow depth), it is probable that this pattern coarsening would have no
limit as it is driven by hydrodynamics, which is mostly self-similar. The observation
that this coarsening stops at some final wavelength should therefore be associated
with a stabilizing mechanism, namely the presence of the free surface.

The places selected for the experiments were of particular interest as different
final wavelengths were observed across the river (figure 18c–e). The experiments just
described above have been performed on the side of the river (say, at a distance
less than one third of the river width from the bank). In this ‘lateral’ region, the
sand is well sorted and the dune wavelength is observed to saturate for a rescaled
wavenumber kH just below the resonant conditions (figure 19a). By contrast, in
the central part of the river, much larger bedforms are present (figure 18d,e). They
display superimposed dunes on their stoss side, and are called mega-dunes hereafter.
The river slope and the flow velocity were not significantly different in the dune and
mega-dune regions. The major difference was the presence of coarse grains causing
bed armouring in the central part of the river. As shown in figure 18(e), the transition
between the two regions is rather sharp. We have flattened the bed over a zone of
12 m in length and 4 m in width to observe the formation of mega-dunes. The initial
stage is the formation of ripples composed of small sand grains that merge, leading
to the same dunes as described on the side of the river. However, in the course
of this pattern coarsening, the inter-dune zone becomes richer in coarse grains so
that the dunes eventually propagate on a bed that is more difficult to erode. They
progressively amalgamate into mega-dunes of wavelength ten times larger than the
dunes, covered with superimposed ripples and dunes. Even in the asymptotic state,
superimposed bedforms are continuously generated. As they propagate faster than the
mega-dune, they accumulate at its crest. During the transient of formation of mega-
dunes (typically 5 h in our experiments), the pattern is disordered and is not composed
by a unique Fourier mode. As far as one can say without having explicitly performed
a multi-scale analysis of the topography, structures of growing size were progressively
formed, which become ordered as they reach the final mega-dune wavelength (between
10H and 20H ).

In summary, a small difference in the experimental conditions (here, most probably,
the presence or absence of coarse grains) can significantly affect the pattern coarsening
dynamics. The wavelength of mega-dunes can be larger than those of dunes by 1–2
orders of magnitude (figure 19a). With this observation, the question is not anymore
to find a new destabilizing mechanism to explain the dune formation. Rather, as
larger and larger bedforms are produced by nonlinear processes, one needs to identify
a stabilizing mechanism limiting this coarsening. As evidenced here, this is exactly the
role played by the free surface.

Figure 19 presents several series of measurements of the final bedform wavelength
collected in the literature for flume experiments (figure 19b) and natural rivers (figure
19c). The most important data set is certainly that reported by Guy et al. (1966).
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Figure 19. Representation in the F vs. kH diagram of different data sets. The solid line shows
the resonant conditions for the free-surface standing waves and separates the supercritical
regime (right) from the subcritical one (left). (a) Experiments performed in the Leyre river,
starting from a flat sand bed. (b) Flume experiments: wavelength of the stationary bedforms
obtained at long time. (c) Bedforms in natural rivers. The mega-dunes are represented by white
symbols, whereas dunes are displayed with black symbols. (d ) Water depth in Rio Paraná
(H ∼ 8 m, d ∼ 300 μm, F = 0.16) measured by multibeam echo sounding (this photograph is
from Parsons et al. 2005). Mega-dunes of wavelength λ ∼ 125 m ∼ 15H can be observed, with
superimposed dunes of wavelength 6 m and probably superimposed ripples too (not visible).

Note that we display these data altogether, i.e. without distinguishing between what
they call ripples or dunes (see the introduction). Importantly, Guy et al. (1966) have
not looked at the transient of formation of bedforms but have focused on the long
time regime. For example, they have often started a new experiment with a bed in
the state reached at the end of the previous run. Moreover, the control parameters
(slope and flow rate) were varied in the course of the experiment to maintain constant
secondary quantities such as the flow depth or the Froude number. This methodology
is probably responsible for the lack of reproducibility and the huge dispersion of
data (one decade horizontally) one can see in figure 19(b). By contrast, the series of
experiments performed by Baas (1999) are much more controlled and reproducible.
In particular, the wavelength is measured as a function of time starting from a flat
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sand bed and fitted to obtain its asymptotic value. These flume experiments clearly
evidence the difference between the initial wavelength at which ripples form, their
evolution by pattern coarsening to form dunes and the nonlinear selection of the final
wavelength due to the free surface. Note that we have not taken into account the
correction of raw measurements performed by Baas (1999) to take into account the
temperature dependence of the viscosity, as it is a nonsense in the hydraulically rough
regime. The last points in figure 19(b) have been obtained by Robert & Uhlman
(2001). As for Guy et al. (1966), we have not taken into account the denomination of
the bedforms (ripple or dunes) used in this article. The points obtained by Baas (1999)
and Robert & Uhlman (2001) are very close to the resonant conditions; the whole
data set of Guy et al. (1966) is clearly in the subcritical regime – at low F and/or
low wavenumber kH – and globally follows the resonance curve. We have gathered
in figure 19(c) the points measured in the Leyre river, in the Gr̊adyd tidal channel
(Bartholdy et al. 2005), in the Mississipi river (Harbor 1998), in the Missouri river
(Annambhotla et al. 1972), in the Rhine (Carling et al. 2000; Wilbers & Ten Brinke
2003) and in the Rio Paraná (Parsons et al. 2005). One can observe that the dunes
propagating on the stoss slope of mega-dunes lie in the same region of the diagram
as the simple dunes – roughly between kH = 0.1/F2 and kH = 1/F2. The mega-
dunes lie between kH = 0.3 and kH = 0.1/F2. It should be emphasized that the
different points in this graph correspond to very different flow depth H (compare
e.g. the mega-dunes in the Leyre river shown in figure 17d and those in the Rio
Paraná shown in figure 19d ). It means that the saturation length, which determines
the wavelength at which ripples form, is not a relevant length for the formation of
dunes and mega-dunes.

5.3. Denomination of bedforms

We then see why a distinction between ripples and dunes based on some absolute
dimension considerations is misleading from the physical point of view: depending
on the value of the water depth, bedforms ‘of less than about 2 feet’ (Guy et al. 1966)
or ‘less than 0.6 m’ (Ashley 1990) can feel or not the free surface. Nor a criterion
based on the amplitude |δ|ζ of distortion of the free surface can be satisfying to
define dunes. Indeed, the free surface is distorted by less than 10 % of the bedform
amplitude for F < 0.35 or for kH > 3. With a definition based on the amplitude
of distortion of the free surface such as that proposed by Guy et al. (1966), there
would be no dune at all in natural rivers! Approaching F = 1 from below, the
distortion of the free surface, in antiphase with the topography, becomes more and
more pronounced. Above F � 0.6, this effect becomes sufficient to create a zone of
stable wavelengths around the resonance (figure 16) and thus a gap difficult to cross
during the pattern coarsening.

These results then suggest a new classification of river bedforms based on the
dynamical mechanisms responsible for their formation. The most obvious criterion
is the sensitivity to the presence of the free surface. We thus define ripples as the
bedforms whose wavelength λ is sufficiently small compared to the flow depth H

not to feel the finiteness of the flow depth. In the diagram F versus kH , they are
located in the supercritical region, i.e. their wavenumber is larger than the resonant
value. When the scale separation between the flow depth and the saturation length is
sufficient, the structures that form by linear instability of a flat sand bed are ripples.
Beyond the linear regime the pattern coarsening leads to growing wavelengths that
reach the resonance curve. Once in the subcritical region on the left of this curve
(figure 19) hydrodynamics becomes affected and in some case dominated by the
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presence of the free surface and the bedforms can be called dunes. As evidenced by
our field experiments, the pattern coarsening can end with very different bedforms
depending on the conditions (e.g. the grain size distribution). The associated nonlinear
selection of pattern wavelength is an open problem (Politi & Misbah 2004; Andreotti
et al. 2006) that will require specific investigations. Our observations suggest to define
mega-dunes as bedforms sufficiently large to present superimposed dunes. It is worth
noting that dunes can present superimposed ripples when the scale separation between
the flow depth H and the saturation length Lsat is sufficient. The criterion to separate
dunes from mega-dunes is then based on the location of the superimposed bedforms
with respect to the resonance curve in the plane F versus kH . This distinction is
important, as in very deep water, the pattern coarsening would lead to ripples large
enough to accommodate superimposed ripples on their stoss side. In this case, one
should talk about mega-ripples. In summary, the appellation of given subaqueous
bedforms should be chosen in function of their location in the diagram F versus kH ,
with an additional suffix ‘mega-’ to point out the presence of superimposed structures.

6. Conclusion
In this article, we have performed the linear stability analysis of a flat sand bed.

The destabilizing mechanism is of hydrodynamical nature and is related to the phase
advance of the basal shear stress with respect to the topography. Two stabilizing
mechanisms are identified: the sediment transport saturation length Lsat and the
slope effect, which depends on the ratio u∗/uth. As Lsat is generically larger than z0, it
dominates and the most growing wavelength λmax is the product of a prefactor related
to hydrodynamics by the saturation length. This most unstable mode is associated
with ripples, which thus form by a linear instability. In the case of a smooth bottom,
the roughness seen from the inner layer is governed by the viscous length ν/u∗, which
may dominate the scaling of λmax if ν/u∗ is larger than Lsat (Sumer & Bakioglu 1984).

Because of the slope effect, the ratio λmax/Lsat is a decreasing function of u∗/uth.
We have analysed different sets of measurements of initial ripple wavelengths λmax

available in the literature and deduced the corresponding saturation length, assuming
that the hydrodynamical model is correct. Note that Lsat is found roughly independent
of u∗ and between 5 d and 15 d . These values are consistent with a saturation length
limited by the grain inertia (Lsat � 2(ρs/ρf ) d) as previously stated by the authors
(Claudin & Andreotti 2006; Andreotti & Claudin 2007). This prediction is especially
good for large grains (d � 1 mm), for which viscous effects are completely negligible.
However, the data show systematic dependencies that are not captured by the present
model: the wavelength at which ripples form is systematically larger for smaller or
rougher grains.

We have performed field experiments in the Leyre river, whose results show that the
evolution of the ripple wavelength λ and amplitude ζ at short time is consistent with
a linear instability. We also observed that these ripples present a pattern coarsening:
their wavelength grows and saturate just after crossing the resonance condition of
surface waves. In the course of this pattern coarsening, the bedforms are in quasi-
equilibrium between erosion and deposition.

The influence of the river free surface on the bed is stabilizing. Gravity waves
excited at the free surface by the bedforms are in phase at small λ/H (supercritical
regime) and in antiphase at large λ/H (subcritical regime). In between, the free
surface is phase advanced with respect to the bottom, so that it tends to induce a
phase delay of the shear stress on the ground. Bedforms of wavelength around the
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resonance conditions are thus stabilized. Moreover, at very large λ/H , the inner layer
invades the whole flow and the free surface again has a strong stabilizing effect. As
no destabilizing mechanism is associated with the presence of the free surface, dunes
do not form by a linear instability. This result is directly confirmed by our field
experiments showing that they form by nonlinear pattern coarsening, as suggested by
Raudkivi & Witte (1990) and Raudkivi (2006). Our experiments also show that the
nonlinear selection of the final wavelength is very sensitive to small changes in the
experimental conditions, and in particular to the presence of coarse grains.

Finally, our results suggest to classify subaqueous bedforms according to the
dynamical mechanisms that control their formation. We thus propose the following
bedform definitions and characteristics.

(i) Ripples are bedforms whose wavelength λ is sufficiently small compared to the
flow depth H not to feel the presence of the free surface. In the diagram F versus kH ,
they are located on the right of the resonance curve (supercritical regime). They form
by linear instability and their initial wavelength essentially scales on the saturation
length Lsat . They exhibit pattern coarsening and remain ripples until they cross the
condition of resonance of the surface waves.

(ii) Dunes are bedforms whose wavelength λ is sufficiently large compared to the
flow depth H to be stabilized by the presence of the free surface. The ripple pattern
coarsening generically leads to the formation of dunes. In the diagram F versus kH ,
they are located along the resonance curve on the subcritical side. If the flow depth
H is much larger than the wavelength at which ripples form, dunes may present
superimposed ripples.

(iii) Like dunes, mega-dunes are under the influence of the free surface and on the
left side of the resonance curve but they present superimposed dunes. They typically
result from the coarsening of a dune pattern pushed to very large wavelength by
heterogeneities (in particular a polydispersed sediment).

Further studies are needed to investigate this nonlinear wavelength selection in
details. For the purpose of describing the interactions between bedforms, future
models will have to incorporate hydrodynamical nonlinearities and in particular flow
separation.
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